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Purpose. We explore use of “bootstrapping” methods to obtain a mea-
sure of reliability of predictions made in part from fits of individual
drug level data with a pharmacokinetic (PK) model, and to help clarify
parameter identifiability for such models.

Methods. Simulation studies use four sets (A-D) of drug concentration
data obtained following a single oral dose. Each set is fit with a two
compartment PK model, and the “bootstrap” is employed to examine
the potential predictive variation in estimates of parameter sets. This
yields an empirical distribution of plausible steady state (SS) drug
concentration predictions that can be used to form a confidence interval
for a prediction.

Results. A distinct, narrow confidence region in parameter space is
identified for subjects A and B. The bootstrapped sets have a relatively
large coefficient of variation (CV) (35-90% for A), yet the correspond-
ing SS drug levels are tightly clustered (CVs only 2-9%). The results
for C and D are dramatically different. The CVs for both the parameters
and predicted drug levels are larger by a factor of 5 and more. The
results reveal that the original data for C and D, but not A and B, can
be represented by at least two different PK model manifestations, yet
only one provides reliable predictions.

Conclusions. The insights gained can facilitate making decisions about
parameter identifiability. In particular, the results for C and D have
important implications for the degree of implicit overparameterization
that may exist in the PK model. In cases where the data support
only a single model manifestation, the “bootstrap” method provides
information needed to form a confidence interval for a prediction.
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INTRODUCTION

An expected benefit of fitting individual pharmacokinetic
(PK) and pharmacodynamic data with models is that one can
then make inferences and potentially useful predictions. Of
special interest are predictions of “the concentration-time pro-
files of drugs during chronic drug administration from knowl-
edge obtained in single dose studies” (1). A well known problem
arising from such predictions is that the characterization
resulting from an acceptable fit of single dose data can, for
that individual, yield unrealistic predictions, for example at an
hour after dosing during oscillatory steady state (SS) following
a fixed interval oral dosing regimen. The absence of some
measure of reliability increases risk when such predictions form
the basis for decision making. The problem can have any of
several root causes. Consider the classical two-compartment
model with absorption. Purves (2) identifies the sources of
difficulty in parameter estimation which carry through to predic-
tion, including multiple outcomes resulting from the rank order
of the rate constants, a variety of local minima, and anomalous
outcomes. Purves offers useful strategies to limit such difficult-
ies, but notes that they can not be completely avoided. As a
consequence, a fit of a model to an individual data set may be
reasonable, yet the fitted parameter values may poorly predict
the time trajectory of SS drug levels for that individual. Frustra-
tion arising from such experiences has been responsible, in
part, for the preference of some investigators for noncompart-
mental PK parameter summaries, which frequently fail to opti-
mally extract useful information from the data, and severely
limit one’s ability to predict.

The field will benefit from having techniques to measure
the reliability for such predictions. They will not substitute for
existing analysis techniques, but may offer means to new
insights on the problems under study. They should allow one
to state, for example, that at one hour after dosing at SS for
the regimen specified, the individual is expected to have a drug
plasma level within an estimated range of 36-52 ug/ml, with
a probability of 10% that the estimated range fails to cover the
true level, assuming system constancy. Such measures can aid
decision making. In theory, information contained in the vari-
ance-covariance matrix that results from the fitting procedure
can be incorporated into a strategy to provide a reliability
measure, but such a strategy can be unreliable when problems
like those Purves discusses are severe.

Here we present results exploring how bootstrapping meth-
ods (3,4) can be used to identify the region in parameter hypers-
pace that is most consistent with the experimental data and
related knowledge. The information generated by that process
is then used to obtain a measure of reliability of generalized
predictions made for new settings of the independent variables.
The data-dependent bootstrap propagates uncertainty through
the PK model, and is viewed as a simulation-based approach
to map data variation to PK parameter uncertainty, and hence
to PK model predictions. When additional data is available this
propagation can be extended further through a pharmacody-
namic model to predictions of response.

There are three main steps.

1. Use a bootstrap to generate single-dose pseudo-obser-
vations from the same general region that contains all of the
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individual experimental data. This step essentially generates
equally plausible values to what has been observed.

2. Use each set of real or pseudo-data and established
methods to fit PK model parameters. This step essentially maps
a plausible region of the PK parameter space in the vicinity of
the best fit parameter set.

3. Finally, use these fitted parameter sets to generate a
frequency distribution of plausible, generalized predictions for
multiple dosing, and use that distribution to measure the reliabil-
ity of the traditional single value prediction.

Although the methodology is general and extendible to
all PK and pharmacodynamic models, we limit study here to
data that can be fit to the classical two compartment PK model
with first-order absorption, because it is a model that is fre-
quently used and one that poses notorious difficulties.

Consider sets of single dose drug level versus time data,
from each of several different subjects. A PK model has been
fit to each dataset, and each fit is judged acceptable. Each set
of PK parameter values can be used to calculate subject-specific
drug levels during a repetitive dosing regimen. Extending the
prediction for the new conditions stresses the model. A serious
problem, which we illustrate later, is that it is possible that
the fitted parameter values for some subjects give reasonable
predictions, whereas predictions for other subjects are grossly
inaccurate, yet in both cases predictions following a single dose
are acceptable. In practice, of course, one never knows true
levels. Is there some other means of distinguishing between
the former and latter subjects? In our example, visualization
of bootstrap results makes the distinction clear, while also pro-
viding information on the reliability of an extended prediction.

METHODS

Overview of Methodology

In general, the approach is as follows. For each set of
individual experimental drug levels we identify an error model
for drug concentration levels, as a function of time, which
specifies probability regions like the shaded region in Fig. 1

time
Fig. 1. A schematic of drug level data vs. time. In our simulation
example, subjects have 20 observation times. Here only 5 are shown.
The solid curve is the drug level predicted from the fit of the PK model
to the data. The shaded region represents a model-based high probability
region as discussed in the text. The three dashed frequency functions
show three different possible parametric bootstrap distributions.
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and an appropriate error structure describing how observations
are expected to deviate from the true PK model prediction.
Figure 1 shows a hypothetical mean concentration curve, and
the shaded region might represent, for example, a pointwise
95% probability region. Assume that the PK effects are rela-
tively stable over time, and that one has identified a satisfactory,
applicable PK model. The choice of fitting criterion used to
produce a curve like that in Fig. 1 clearly depends on the
assumed error structure. Often, expert knowledge can support
the choice of error structure. In our example, the fitting criterion
is to minimize the sum of squared weighted residuals; this
follows from a particular error structure we assume below.

A core assumption is that each observed experimental drug
level, C;, is a realization from a distribution of plausible values
having an estimable variance and a mean specified by the true
PK model. Thus the central curve in Fig. 1 shows the time
trajectory of the mean concentration, and flanking regions like
the one in Fig. 1 are of most interest when they reflect typical
variation of individual data. In this case, unobserved values
that lie within such a region contain similar information to the
observed data, and, in some sense, can be treated as data (5,6).
It follows that one may bootstrap the observed data— randomly
generate new plausible data based on the observed—to create
a pseudo-dataset, and then fit the model to that pseudo-data to
obtain a set of parameter pseudo-estimates that provide another
estimate of that individual’s PK parameter values. The latter is
expected to provide predictions that are as plausible as those
obtained from the original experimental fit. Such predictions
can, upon repetition of the process, reflect, for example, the
sampling variability inherent in the original data.

Bootstrapping Pharmacokinetic Data

1. Choose a Model for Bootstrapping the Experimental Data

Three options that are easy to implement are:

(a) Parametric Bootstrap. Assume some density fiCy; &)
represents the distribution of drug concentrations for individual
i at times t = I, ..., T, where T; is the total number of
observations on individual i. Here, &; is estimated from the data
using, for example, maximum likelihood. Denote the estimate as
ci),-,_ Sample C¥ from f{C,; d;,) to create M pseudo-datasets. This
option is expected to be sensitive to the form of f.

(b) Nonparametric Bootstrap. For each i independently,
and conditional on each ¢ in turn, let C;; ;) assign mass 1/
T; to the concentration equal to the fitted ¢, plus each of
the T; residuals. During bootstrapping, the time points remain
unaltered. This approach can be implemented within each indi-
vidual by resampling the residuals for individual i with replace-
ment, and adding these pseudo-residuals back to the fitted values
to create pseudo-data Cj. Weighting and/or rescaling of the
residuals might be needed to obtain a suitable error structure.
This method requires weaker assumptions than (a).

(c) Smoothed Bootstrap. Consider each datum to be a pair
(t, Cy). For each i independently, let AC;; &) = frC) =
V/T; Z,TLIN((I,C,-,)’, ) where ) is a covariance matrix that sup-
plies a small amount of noise with suitable error structure. This
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approach can be carried out by randomly sampling time-concen-
tration pairs from the existing data, and then, for these pairs,
creating each new pair (*, C¥) according to (t*, C¥) = (+,Cy)
+ (21, 22) Where (z;, 7o) ~ N(0, Q). This option is expected to
provide smoother, more intuitive pictures for graphical display.

2. Bootstrap the PK Parameters

Denote by 8 the parameters of the chosen PK model, and
by 8 their estimates based on observed data. For the original
experimental data and each pseudo-dataset created above, fit
the PK model to obtain the primary parameter estimates 6, and
the pseudo-estimates éj’-', respectively, j = I, ..., M. Because
bootstrapping effectively generates pseudo-data representative
of a shaded region like that in Fig. 1, the M sets of é}" are
representative of the types of PK response that an individual
might have.

3. Simulation

Use 6 and the éj* to simulate drug levels specific to the
individual. Use graphs, summary statistics and percentiles from
bootstrap distributions to draw inferences.

A Specific Example

In this example, we used data for four subjects (A-D) as
specified in the next section, and we illustrate the parametric
bootstrap option. We set T; = 20 for all i, and M = 100. These
decisions translate into the following specific steps.

1. Thedensity f{C;; &;) is intended to represent the shape
and dispersion of plausible drug levels that would result through
time if repetitive studies could be carried out on the unchanged
ith individual. The choice for f used in this study assumes that
C; is Gaussian with mean at time ¢ specified by the PK model,
and var(C;) proportional to the mean. Thus, in option (a) we
used weighted least squares to fit the model to the data to obtain
C,. Alternative parametric bootstrap models, as suggested at
the first and fifth observation in Fig. 1, can be tailored to the
individual and/or to the observation time. However, for our
data the single model suffices.

The bootstrap proceeds at the first observation time by
simulating one hypothetical drug level C} from the bootstrap
distribution: C¥ = C‘,-, + (zi/ wi), where z;; is a normal variate
and wy = 1/ The w;; are the weights used for model fitting.
Repeat the preceding for all additional observation times. The
resulting 20 values of C# form one of 100 bootstrapped pseudo-
datasets of plausible drug levels.

2. Next, while observing Purves’ fitting admonitions (2),
fit the PK model to each pseudo-dataset, as above, using the
Gauss-Newton weighted least squares fitting algorithm option
of WinNonlin 1.1 (SCI, Cary, NC). Thus, each set of C¥ results
in a fitted §. By repeating the process M-I times, we completed
the bootstrap methodology for individual A. Individuals B, C
and D were treated identically.

3. We use the four sets of 100 @;j* as auxiliary inputs to
the PK model equations to generate drug level pseudo-predic-
tions. To examine results, we consider making predictions for
1, 3 and 6 hours after dosing at SS for a dosing regimen of
200 mg (see next section) given orally every 12 hours. There-
fore, having estimated that the four subjects will reach steady
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state before the 30th dose, we calculate drug levels at 361, 363
and 366 hours after the first dose. For each individual, the
resulting predicted SS levels at any particular time are expected
to form a frequency distribution spanning a drug level range
that contains the prediction for that time made using the original
f. That frequency distribution may be used to form an approxi-
mate confidence interval. For example, the range formed after
eliminating the five largest and smallest values is an approxi-
mate 90% confidence interval.

Experimental Data

The PK data used is based on previously reported data (7)
that were collected as part of a classical corporate Phase II
clinical trial; drug plasma levels were determined at i = 20
times, at 0.083 to 48 hours following a 200 mg oral drug dose.
The development team fit the classical two-compartment open
model with first order absorption commencing after an individ-
ual lag-time to the data. Mean parameter estimates and coeffi-
cients of variation (CV, as %) for 22 individuals were V: 4.1
(25%) liters; k,: 6.0 (77%) hr™'; ky: 0.09 (22%) hr™!; ky,: 0.35
(83%) hr'; ky;: 0.36 (64%) hr™!; and tiag: 0.19 (37%) hrs. Based
on prior knowledge a bioavailability = 1.0 could be assumed.

As part of an earlier study (7) we simulated a large number
of PK parameter sets, retaining the observed covariance struc-
ture, where the mean and variance of each parameter were the
same as those above. From these, four examples have been
selected and designated individual A, B, C and D. We used
each set to generate error-free, template (true) drug level data,
Ciruein at the 20 observation times. Error, selected indepen-
dently at random from a normal density having a mean of zero
and a variance chosen to induce a 10% CV for C,, was then
added to each C,,,;, to obtain a simulated experimental drug
level, C;,. Using the above WinNonlin fitting algorithm and
following the producer’s instructions (8), we fit the PK model
to each of the four data sets using the above weighting scheme.
We added the constraint that all parameter estimates be positive
and within the following ranges: V: 1-25 liters; k,: 0.1-50 hr™!;
kio: 0.01-1.0 hr™!; k;»: 0.001-100 hr™!; ky;: 0.001-100 hr™';
and t,: = 0.5 hrs.

Each fit gave a plausible concentration time curve. The
bootstrap methodology was then applied to each of the four
sets of C;,. A discussion of fitting methodology and quality of
fit are provided in (9) for three similar data sets.

Physiologic Parameters

Many investigators prefer to parameterize PK models
using physiologic parameters. For each bootstrapped set of
pseudo-data we also calculated an alternative set of parameter
pseudo-estimates: CL*, CL§, V¥, V¥ and V¥; where the notation
is as defined by Jusko (10). For the majority of the discussion
to follow, however, we use the micro constants listed in the
previous section because that was the parameterization selected
by those who generated the original data. Doing so also facili-
tates comparison between this report and several cited
references.

RESULTS

Figures 2-5 show the primary parameter estimates, the
100 bootstrap estimates, and the true values, in sets of pairwise
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Fig. 2. Paired scatter plots of four PK parameters for subject A. One circle is shown for each point. For each subject the area
of the circle corresponds to the predicted SS drug level. From the smallest to the largest, circle area increases through 20
equal-increment steps. In some cases an axis has a log scale. The E designates the fitted, experimental primary parameter
estimates. The T designates the corresponding true values. In the left and center plots one of the 100 bootstrap sets is not
shown (is outside the plot frame): (kyo, V) = (1.72, 0.20) and (ky, ki) = (1.72, 19.7).
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Fig. 3. Paired scatter plots for subject B as described in Fig. 2. If the minimum value in Fig. 6B is deleted, then the range of
circle sizes looks more like that in Fig. 2. Six of 100 sets are not shown in the left and center plots; one is not shown in the
right plot. They are: (k;o, V) = (0.052, 11.6), (0.22, 2.7), (0.38, 1.2), (0.70, 0.61), (0.72, 0.61), (1.78, 0.30); (kio, k;2) = (0.052,
0.008), (0.22, 46.0), (0.38, 5.4), (0.70, 7.9), (0.72, 5.7), (1.78, 22.8) and (k,y, k;2) = (15.7, 46.0).
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Fig. 4. Paired scatter plots for subject C as described in Fig. 2. One of the 100 sets is not shown in the left plot; two are not
shown in the right plot. They are: (k;o, V) = (0.063, 25.0) and (k,,, ky;) = (93.5, 52.2), (4.9, 7.64).
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Fig. 5. Paired scatter plots for subject D as described in Fig. 2. All 100 parameter sets are represented in each plot.

scatterplots for each individual; the fits are adequate. In these
plots, one set of parameter values is indicated by the location
of each circle, The area of the circle corresponds to predicted
SS drug level as discussed below. The agreement or lack of
agreement between truth and estimates in these plots is consis-
tent with observations from the simulation study of Laskarzew-
ski, er al. (11). Note that to better visualize the data the scales
for ko, ky2 and k,, are logarithmic in all four plots, whereas
those for V are linear. Summary statistics for each are listed
in Tables I and II. To emphasize the differences in steady state

predictions, the area for each circle in Figs. 2-5 corresponds
to predicted SS drug level, with the largest area corresponding
to the maximum of the 100 simulated values for each individual,
and the smallest area corresponding to the minimum.

Figure 6 shows the estimated, bootstrap, and true SS drug
levels for each individual. The predicted SS drug levels were
within 3% of the template levels for subjects A and B. However,
the corresponding levels for subjects C and D were off by as
much as 90%. There was no clear indication from either the
experimental data or the results of the fit that such discrepancies

Table I. Summary Statistics for 100 Bootstrap Estimates for Subjects A and B

PK parameter pseudo-estimates

Drug levels time after dosing at SS

v ka klO k]2 k21 1 hr 3 hr 6 hr
Mean A 2.7 9.8 0.18 1.76 0.81 65.6 46.4 39.0
B 5.2 8.9 0.10 0.46 0.42 53.8 422 344
Median A 2.8 7.5 0.15 1.31 0.78 65.3 46.7 393
B 5.4 7.6 0.09 0.22 0.38 54.8 42.5 344
CV(%) A 35 90 64 77 31 5 5 6
B 24 176 92 239 46 9 6 3
Minimum A 0.5 1.4 0.08 0.28 0.35 58.2 41.9 34.0
B 0.3 0.9 0.05 0.01 0.07 213 20.8 314
Maximum A 4.8 49.2 0.79 8.17 1.71 74.8 50.8 432
B 11.6 49.3 0.72 7.91 1.18 58.2 45.0 36.6
Table II. Summary Statistics for 100 Bootstrap Estimates for Subjects C and D
PK parameter pseudo-estimates Drug levels time after dosing at SS
Vv Kk, ko k2 K 1 hr 3 hr 6 hr
Mean C 5.6 5.5 0.06 0.083 1.31 74.2 66.6 577
D 5.1 7.1 0.04 0.16 0.18 105.8 96.7 86.7
Median C 5.8 4.4 0.07 0.09 0.04 60.7 52.4 4238
D 53 5.3 0.05 0.83 0.06 84.1 75.6 65.5
CV(%) C 15 912 80 636 736 34 38 43
D 13 89 60 141 162 39 44 49
Minimum C 1.8 1.5 0.01 0.03 0.07 224 20.7 33.2
D 2.6 1.6 0.00 0.04 0.01 58.3 58.4 49.2
Maximum C 7.0 40.3 0.25 52.20 93.50 1187 111.8 103.1
D 6.1 379 0.11 1.15 1.34 2139 205.9 196.6
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Fig. 6. Frequency histograms for simulated predicted drug levels 3
hours after dosing at steady-state. E indicates the value estimated using

the fitted (experimental) primary parameter estimates, and T indicates
the corresponding true value.

might be anticipated. The distribution of bootstrap estimates,
however, is clearly qualitatively different for subjects A/B than
for C/D.

In addition to the differences shown in Figs. 2-5, inspec-
tion of all possible bivariate scatter plots for the corresponding
physiologic parameter sets (not shown) also revealed two sets
of distinctly different patterns, one for subjects A and B, and
the other for subjects C and D. Clear evidence of qualitative
differences, namely patterns similar to those seen in Figs. 4
and 5, were evident in the bivariate scatter plots of subjects C
and D, specifically (CL%, CL*), (V¥, V§) and (CL}, V).

Subjects A and B

The 100 bootstrap parameter estimates for subject A map
a well-defined five dimensional (SD) density (excluding ty,),
at least as viewed in bivariate scatter plots like those in Fig.
2. The marginal distribution for each rate constant, however,
has a large range and a relatively large CV (Table I). The
functional dependencies that are inherent in the PK model
equations are reflected in the observed correlations. Each of
the conditional distributions for the three pairs shown—(k;,/V),
(ki1o'ky2) and (k,, 1k 2)—have relatively small conditional ranges
and conditional standard deviations. Results for subject B are
similar to those for A.

Given the large CVs of each parameter, it is striking that
the SS drug levels for A in Fig. 6 and Table I are tightly
clustered, with CVs of only 5—6%. This and the similar results
for B might seem counter-intuitive. The explanation is the fact
that each value within a parameter set is strongly conditioned
on each of the other parameter values in that set. Table 3,
showing a cross-correlation matrix of the PK parameter pseudo-
estimates, confirms this dependency. Thus, a modest random
change in one or more experimental drug level may give rise
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to a second set of fitted parameter values that can seem quite
different from the first when only values of a specific parameter
are compared, whereas SS predictions may be similar. Such
differences can be disconcerting.

Subjects C and D

Although the sets of bootstrap PK parameter estimates for
subjects A and B produced a homogeneous set of SS drug level
predictions, the results for C and D were dramatically different.
That difference is emphasized by the clustering of larger and
smaller circles in Figs. 4 and 5. Clearly, there is evidence in
Fig. 6 of bimodality in the SS simulations for C, and possibly
D. Unlike for A and B, different SS levels for C and D tend
to correspond qualitatively to different regions of the parameter
space. Note that the circles appear to fall in two clusters: one
of mostly smaller circles and a second of mostly the larger
ones. This shows that the data support two conflicting model
manifestations and corresponding future predictions. In this
context a “model manifestation” is a distinct region of predicted
response that may correspond to a specific region of parameter
space. However, if small variations in parameter space tend to
produce predictions that vary between quite different regions
of prediction response space (as occurs for subjects C and D
in our example), then the word “manifestations” is appropriate
for indicating that model predictions effectively arise from dis-
tinct competing estimates of the modeled process. This uncer-
tainty also reduces the correlation in Table 3. Also note that
the fitted, experimental parameter values for both C and D fall
in a region away from the truth, and away from the regions in
Figs. 2 and 3.

Measuring Reliability

The parameter summary statistics across the bootstrap sets
(Table I and II) provide a useful measure of parameter uncer-
tainty, but in practice it is the predicted drug levels that are of
primary interest. In Guzy and Hunt (9), similar data, along with
quality of fit data is compared to information from the variance-
covariance matrix resulting from the fit of three similar data
sets from the same PK protocol.

Together, the bootstrapped parameter sets and SS drug
levels may contain sufficient information to provide a measure
of reliability for a specific prediction made using & (4). For
example, by eliminating the 5 largest and smallest values from
the predictions for A we obtain these estimates for a 90%
confidence region at 1, 3 and 6 hours after dosing, respectively:
59.9-71.6,42.4-50.2, and 35.4- 43.0 ng/ml. Although the boot-
strap might be used to estimate confidence regions for PK
parameters or predicted SS levels by taking appropriate quintiles
of the pseudo-estimates, such an effort would not account for
the larger uncertainty arising from the discovery that two quali-
tatively different estimates of reality are supported by the analy-
ses for C, and possibly D.

All Four Subjects

Why are the predictions for C and D so strikingly different
from those of A and B, even though the original fits of the
experimental data were all judged acceptable? The band of
plausible drug levels (as in Fig. 1) for C and D can apparently
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Table III. Cross-Correlation Matrix of Bootstrap Estimates for Subjects A and C

Subject A \' k, log ko log k> log ky;
\Y% 1

k, 0.62 1

log ko —0.95 —0.54 1

log ki —-0.95 -0.61 091 1

log ky; -0.43 —0.40 0.31 0.65 1
Subject C \" k, log ko log k;» log kyy
\Y% 1

K, 0.15 1

log ki -0.37 0.07 1

log k> -0.61 0.15 0.24 1

log ky) —0.46 0.13 0.74 0.71 1

accommodate at least two different manifestations of the two
compartment model, a property that warrants further research.
In Fig. 7, we plot the pseudo-estimates, pooled across all
four subjects; SS estimates greater than 72 wg/ml for C and
108 pg/ml for D are shown with dark circles. The within-
subject conditional relationships are observed to extend across
all four subjects. The pooled data represented by the open
circles appear to map a large, well-defined 5D relationship,
one that we suggest represents one manifestation of the two
compartment model. The parameter sets corresponding to dark
circles are believed to represent a portion of a different manifes-
tation, one that branches from the one identified above.

DISCUSSION

The results are both interesting and apparently informative,
suggesting that the bootstrap can shed light on the issues of
parameter identifiability, as well as providing approximate con-
fidence intervals for predictions. Of the results generated, the
most striking are the differences between subjects A/B and C/
D, especially since the fits to all four experimental data sets
appeared reasonable. Taken together, the results indicate that
a prediction made using the best fit parameter estimates for
subjects C and D should be treated as being less certain than

corresponding predictions for subjects A and B. The bootstrap
is thus a useful aid for PK decision making.

As demonstrated, bootstrapping can identify when two (or
more) model manifestations are plausible characterizations of
the data, but it alone may not identify one as being the more
preferred representation. Having additional information, how-
ever, may allow one to favor one manifestation over another.
Suppose, for example, that only one of a dozen individual data
sets shows evidence of two or more PK model manifestations,
and that application of the methodology to that data set has
given results similar to the data for C. One might be able to
draw strength from the other eleven individuals, perhaps by
revising the parametric bootstrap distribution in a Bayesian
fashion, to focus inference on the more plausible manifestation.

Although each of the PK parameter pseudo-estimates is
solved using the same model, fitting procedure, and starting
value, the data differ in each case. Suppose that, for data in a
banded region like that in Fig. 1, the likelihood has a form with
two competing local maxima, and that the potential variation in
the data represented by such a band is sufficient to vary the
heights of these maxima, but not to change fundamentally the
shape of the likelihood. If this is the case, it could cause the
apparent presence of two model manifestations, as is seen for
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Fig. 7. The data in Figs. 2-5 are pooled and replotted. Points roughly corresponding to a second PK model manifestation
(see explanation in text) are shown with dark circles. The main body of data for subjects A-D (open circles) gives the
appearance of belonging to a larger, more general multivariate density that may represent a single, primary, drug specific

manifestation of the PK model.
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subject C. However, the results alone are not conclusive proof
that multiple potential local maxima exist.

To our knowledge Laskarzewski, et al. (11), and later
Betzien, et al. (12), were among the first to report evidence of
two or more PK model manifestations, whereas much has been
published on the “flip-flop” phenomenon. They show that dif-
ferent sets of drug levels simulated from the same error-free
template data from a two compartment PK model with absorp-
tion, can give rise to a bimodal set of fitted parameter values.
Laskarzewski, ef al. observed such bimodality when the error
added was 10%, but not when it was 5%. It makes sense
that with increasingly precise data the problem of structural
identifiability (13-15) of the parameter values decreases. With
very imprecise data, the greater uncertainty can support a variety
of manifestations of the same model, and hence the problem
of structural identifiability increases.

What about different models? Is it possible that for some
sets of bootstrap data one may get a better fit using a different
model from the same general class, in this case a one or a three
compartment model with absorption? Based on the research of
Godfrey and Chapman (14) and Woodruff, er al. (15,16), the
likely answer is yes. Given that, one should be able to use
simulation approaches to provide new, quantitative information
about relative model indistinguishability for a given experimen-
tal data set.

The performance of the bootstrap is highly dependent on
the nature of the available data, and on the assumptions that are
imposed. This is particularly true for the parametric bootstrap
approach; the other bootstraps listed are less model-dependent.
Obtaining a sample of simulated predictions with only a 5%
coefficient of variation (subject A, Table I) can not therefore
be taken as a signal that the simulated predictions are accurate,
or that they accurately reflect reality, since the PK model may
be somewhat misspecified.

When bootstrapped SS levels are within the range typical ‘

of experimental error and hence might be treated as being
experimentally indistinguishable, should the corresponding
parameter sets also be treated as being indistinguishable? When
inspecting parameter sets one tends to focus on differences in
one and two dimensions. In so doing one tends to forget that the
parameters are part of a single vector in parameter hyperspace.
Careful plotting of bootstrap pseudo-estimates allows one to
identify a region in parameter space that can give rise to similar,
even experimentally indistinguishable predictions. Although the
pseudo-estimates permit visually appealing plots that may aid
decision making, they contain no more information, in a statisti-
cal sense, than the original data. However, estimating individual
PK parameter values from experimental data is only one step
in the analysis process, and our results show that (visual) identi-
fication of the region in parameter hyperspace that is most
consistent with the entire collage of experimental data is equally
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important and can lead to new insights, such as those
obtained here.
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